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ABSTRACT: The work presented in this paper is part of a general research work, during which combinatorial
representations based on graph and matroid theories were developed and then applied to different engineering
fields. The main combinatorial representations used in this paper are flow and resistance graphs, and resistance
matroid representations. The first was applied to the analysis of determinate trusses and the last two were applied
to the analysis of indeterminate trusses. This paper gives a description of the representations and the methods
embedded within them. The principal methods described in this paper are the conductance cutset method and
the resistance circuit method that are mutually dual and are defined for both resistance graph and resistance
matroid representations. The present paper shows that the known displacement and force methods are dual since
they are the derivatives of the conductance cutset method and resistance circuit method, respectively. The
importance of using combinatorial representations in structural mechanics is not only due to the intellectual
insight provided by it, but also to its practical applicability. Some practical applications of the approach are
reported in this paper, among them even a novel pedagogical framework for structural analysis.
INTRODUCTION

The work reported in this paper is part of a general research
during which mathematical models based on discrete mathe-
matics, called combinatorial representations (CR), were de-
veloped, the properties in each and the connections between
them investigated, and then applied to represent and solve var-
ious engineering problems. The representations are based
mainly on graph and matroid theories, whereas in the current
paper two graph representations and one matroid representa-
tion are used. By working in this approach, interesting results
have been achieved, a few of which are mentioned below:

• A general perspective on different engineering fields was
obtained when the same representation was applied to dif-
ferent problems. For example, the resistance graph rep-
resentation was applied to analyze both mass-spring-
damper systems and indeterminate trusses (Shai and
Preiss 1999b).

• New connections between different engineering fields
have been achieved by using the connections between the
combinatorial representations. For example, a dualism
connection between determinate trusses and mechanisms
was derived based on the dualism connection between
their corresponding representations of flow and potential
graphs.

• Known theorems and methods have been derived from
the theorems and methods inherent in the representations.
For example, based on a theorem inherent in the resis-
tance graph representation, called Tellegen’s theorem,
Betti’s Law and the known method for analyzing the dis-
placement of truss joints have been derived (Shai 2001b).

This paper is a continuation of the approach and it uses CR
to give a global perspective on structural analysis and dem-
onstrates it on trusses. It also shows that the known methods,
displacement and force, can be derived from the two known
methods embedded in the resistance graph representation, con-
ductance cutset method (CCM) and resistance circuit method
(RCM), respectively. Furthermore, the present paper shows
that this approach enables revealing of the connections be-
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tween the known methods. This is done by showing on the
basis of the dualism between CCM and RCM that the dis-
placement and force methods are dual methods.

The current work deals only with structures, but the under-
lying approach has been applied also to other fields such as
analysis of mechanics and planetary gears (Shai and Preiss
1999a), optimization of structural trusses (Shai 1997), sched-
uling of robots (Shai 1997), new representations in artificial
intelligence (Shai and Preiss 1999b), and others. The use of
the graph theory in civil engineering computing has been ex-
tensively presented in the literature. For example, some of the
subjects covered are analysis of pipe networks (Shimada
1989), computer-assisted mapping for ground surveys (Qi and
Lall 1989), a methodology for finding the optimal layout of a
detection system in a municipal water network (Kessler et al.
1998), graphic theoretic formulation, which yields a system of
ordinary differential equations that describes the dynamic be-
havior of flows in networks (Onizuka 1986), and a user-opti-
mizing program for traffic assignment based on graph theory
concepts (Hatfield 1974).

From this brief review, one can easily comprehend the im-
portance of graph theory to civil engineering computing. This
importance is increased when graph theory is augmented by
matroid theory, as shown in the present paper.

This paper shows that mathematical graph theory provides
a useful generalization, within which all types of axial force
structures, either determinate or overdetermined, can be dealt
with in a unified way. This generalization is not only intellec-
tually interesting, but is also useful. Various known methods
of solving problems in this domain are shown to be particular
cases of a more general graph theory problem. This enables
useful insights into the methods usually used, thus opening an
avenue for further research into fields that have hitherto
seemed completely understood. Furthermore, representing the
problem as a graph can provide access to mathematically
proven methods from graph theory and using them to solve
various problems of axial force structures. Also, the approach
has been found to be useful as a teaching tool, since learning
the graph theory generalization enables students to compre-
hend a wide range of problems with less effort than by learn-
ing each type of problem separately. This paper gives example
illustrations for all these aspects.

The following section explains the basics of network graph
theory needed for the reader to be able to comprehend the
paper. Within the field of graph theory, many different types
of graphs have been described and their properties evaluated
and published. This paper uses a type of graph called a net-
work graph, and within its context uses two CR, namely the
flow and resistance graph representations.
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This paper shows how to represent a determinate truss as a
flow graph, and then to analyze it. Also, the paper shows how
an indeterminate truss can be represented as a resistance graph.
The suitable algorithm resulting from the properties of the
graph representation is then applied to indeterminate trusses.
The first use of graph theory for the analysis of elastic net-
works was done by Kron (1963), who used the analogy be-
tween electrical networks and elastic structures. To ease the
computational burden, Kron developed the so-called ‘‘diak-
optics.’’ Since then, other works have been published, such as
Lind (1962), who showed how to represent trusses by graphs
and then analyze them. Fenves and Branin (1963), who de-
veloped a method based on graphs and networks for the for-
mulation of structural analysis and on its base, developed the
software program STRESS (Fenves et al. 1965). Graph theory
has also been used in finite-element analysis (Shanghui and
Guohua 1984). Structural analysis and optimization using
graph and matroid theories have been performed by Kaveh
(1991, 1997). A comprehensive work on structural rigidity us-
ing matroid theory appears in Recski (1989).

An approach that deals with structural mechanics in general is
less known in the literature. However, Bjorke has published
works (Wang and Bjorke 1989, 1991) where he established a
unified theory to represent a manufacturing system. He found
that network theory is probably the best foundation for this pur-
pose. The proper equation for the specific problem was obtained
by using a technique that is based on Roth’s (1955) diagram.

The approach reported in this paper is different. After intro-
duction to network graphs and definitions of the graph repre-
sentations, two general and mutually dual graph methods
called resistance circuit method (RCM) and conductance cutset
method (CCM) are developed only on the basis of resistance
graph properties. These methods are known in the literature
for 1D (electrical) systems, whereas in this paper it is shown
how to expand them for multidimensional engineering prob-
lems. These two general methods are then applied to the anal-
ysis of trusses.

NETWORK GRAPHS

The combinatorial representations that are used in this paper
are graphs; therefore, the current section provides the reader
with a brief survey on the graph theory terminology. More
details can be found in Shai and Preiss (1999a) or in books
on graph theory, such as Swamy and Thulasiraman (1981).

A graph is defined by the ordered pair G = ^V, E&, where
V is the vertex set and E is the edge set, and every edge is
defined by its two end vertices. If each edge in the graph is
assigned a direction, then the graph is known as a directed
graph. The directed graph is a network graph if each edge and
vertex has properties of flow and potential, respectively.

For convenience, the paper uses linetype attributes, which
are

• A solid line represents an edge with unknown value of
flow or potential difference.

• A bold line represents an edge for which the flow or po-
tential difference is known.

• A dashed line represents a chord, which is an edge not
included in the spanning tree. If the value of flow in the
chord is known, then it is both dashed and bold.

• A double line represents a branch of a spanning tree.

Given a connected network graph, choosing a spanning tree
within it defines its branches and chords. In order to deal with
the graph representations used in this paper, one should first de-
fine cutset and circuit matrices in their vector and scalar forms.

A cutset in a connected graph is a minimal set of edges
whose removal results in a disconnected graph. It can be
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FIG. 3. Example of Vector Circuit Matrix: (a) Circuits of Graph; (b)
Corresponding Vector Circuit Matrix

FIG. 2. Example of Scalar Cutset Matrix: (a) Cutsets of Graph; (b)
Scalar Cutset Matrix

FIG. 1. Example of Vector Cutset Matrix: (a) Cutsets of Graph; (b)
Vector Cutset Matrix

proved that a cutset separates the graph into two components
(maximal connected subgraphs). When a cutset includes ex-
actly one branch of the spanning tree it is called a ‘‘funda-
mental cutset.’’ This paper deals mostly with fundamental cut-
sets, hence for brevity they will be called cutsets. Each cutset
is defined by the corresponding branch and is labeled with its
branch index. The direction of the cutset is defined by the
direction of its branch, as shown in Fig. 1(a).

The vector cutset matrix Q̄ is a matrix that describes all the
cutsets but contains only topological information. The matrix
has e(G) columns (corresponding to the edges of the graph)
and v(G) 2 1 rows (corresponding to the cutsets or branches
that define them). The value of the matrix element [Q̄]ij may
be 11, 0, or 21. It is 11 if edge j is included in the cutset
that is defined by branch i and has the same orientation as the
cutset, 21 if it has the opposite orientation, and 0 if it is not
included in the cutset. The vector cutset matrix of the graph
in Fig. 1(a) is shown in Fig. 1(b).

The scalar cutset matrix Q is obtained from the vector cutset
matrix Q̄ by multiplying each column with a unit vector in
the direction of the edge to which it corresponds. For example,
the scalar cutset matrix of the graph in Fig. 2(a) is given in
Fig. 2(b).

A circuit is a set of edges that form a closed path. A circuit
is called a fundamental circuit if it includes exactly one chord.
This paper deals only with fundamental circuits, and for brev-
ity they will be called circuits. Each circuit will be labeled
with the index of the chord that defines it. The direction of
the circuit is defined by the direction of its chord, as shown
in Fig. 3(a).

The vector circuit matrix B̄, demonstrated in Fig. 3, has e(G)



columns as for the vector cutset matrix and e(G ) 2 v(G) 1
1 rows corresponding to the circuits. Each circuit is defined
by a chord, therefore the number of rows is equal to the num-
ber of chords defined by the spanning tree. The element [B̄]ij

= 11 if edge j is included in the circuit defined by chord i,
and has the same orientation as the circuit, 21 if it has the
opposite orientation, and 0 otherwise.

Every edge is assigned a vector called the flow, designated
by F̄(e). Flow can correspond to a force, flow of liquid, money,
goods, information, or the like. In control theory, this is called
the ‘‘through variable,’’ but the word ‘‘flow’’ is more suitable
for the work reported here. In this paper the flow in edge e is
interpreted as the force in the corresponding rod in the structure.

Every vertex is assigned a vector called the potential and
designated by The potential may represent a physicalp̄(v).
quantity such as displacement, pressure, or voltage, but it can
also be used for other attributes. For instance, in the shortest
path algorithm it represents the lower bound of the distance
(or the sum of the edge weights) from the current vertex to
the target vertex (Shai 1997). In this paper it represents the
displacement of a structure joint that corresponds to vertex v.
The potentials of the vertices of edge e = ^v1, v2& define the
potential difference of the edge, as follows:

D̄(e) = p̄(v ) 2 p̄(v ) (1)2 1

The potential difference is known in control theory as the
‘‘across variable.’’

FLOW GRAPH REPRESENTATION

A network graph G is a flow graph, designated by GF , if
the flows in the edges are independent of the potential differ-
ences and satisfy the flow law, stated as follows: ‘‘The vector
sum of the flows in every cutset of G is equal to zero.’’ The
flow law may be regarded as a generalization of the well-
known Kirchhoff’s current law. Note that Kirchhoff’s current
law is restricted only to one dimension which is appropriate
for electrical circuits, while the flow law can be multidimen-
sional, thus it can be used for structures and other engineering
systems whose dimension is two or three. The matrix form of
the flow law is

¯ ¯Q ?F = 0 (2)

where F̄ = vector of the flows, or the flow vector.
The flow graph representation can be used to represent various

engineering systems, such as simple electrical circuits, mass-cable
systems in force equilibrium, and so forth. This paper uses the
flow graph to represent statically determinate trusses.

The steps for representing the truss by a flow graph are:

1. Create a vertex in the graph for every pinned joint of the
truss.

2. For every rod create an edge in the graph, called a ‘‘truss
edge’’; its end vertices correspond to the joints that con-
nect the corresponding rod to the truss. Assign an arbi-
trary orientation to each truss edge and a unit vector r̂(e)
directed from the tail joint to the head joint. The engi-
neering meaning of the flow in the edge corresponding
to a rod is the force applied on the head vertex (joint)
by the rod in the direction of the unit vector r̂(e), which
is, of course, equal to the force that the tail vertex (joint)
applies on the rod. If the flow in the edge is positive,
then the rod is in the state of compression, otherwise it
is in a state of tension.

3. Add an extra vertex called the ‘‘reference vertex’’ to the
graph. The reference vertex is a generalization of the
‘‘ground’’ in electrical circuits or of ‘‘datum’’ in struc-
tural sketches.

4. For each externally applied force and reaction, add an
edge as follows. For each externally applied force a
FIG. 4. Example for Analysis of Determinate Truss Using Flow Graph Representation: (a) Statically Determinate Plane Truss; (b) Corresponding Flow
Graph; (c) Force Analysis Equations in Scalar Cutset Matrix Form
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‘‘flow source edge’’ is added. Its tail vertex is the ref-
erence vertex and the head vertex is the vertex corre-
sponding to the joint upon which the external force acts.
Because of the requirements of the analysis algorithm
that are given later, the latter edges should always be
chosen to be chords. Since flow source edges are chords
and the flows in them are known, they appear in the
graph as bold and dashed lines. For each roller support
reaction, a ‘‘reaction edge’’ is added. Its tail vertex is the
vertex corresponding to the joint upon which the reaction
acts and the head vertex is the reference vertex. The re-
action edge is assigned an angle equal to the angle of
the reaction. On the other hand, for each hinged support,
two reaction edges are added, the first having the cor-
responding angle equal to 1807 and the second to 2707.

In trusses, the sum of forces applied on each joint is equal
to zero. In the terminology of the flow graph representation,
this means that the flows in the graph that corresponds to the
truss, satisfy the flow law. Thus, the force analysis process of
the truss is transformed into a search for flows that satisfy the
flow law in the corresponding graph. The flow of forces can
be thought of as originating at the reference vertex, then flow-
ing through the source edges representing the external forces,
then flowing through the truss rods, and then returning via the
reaction edges back to the reference vertex. An example of a
truss, its corresponding graph, and the analysis equations writ-
ten according to (2) are given in Fig. 4.

POTENTIAL GRAPH REPRESENTATION

This combinatorial representation is briefly mentioned in
this paper, therefore it will be explained briefly. A network
graph G is called a potential graph, designated by GD, if the
potential differences in its edges are independent of the flows
and satisfy the potential law, which states ‘‘The vector sum of
potential differences in every circuit of the graph is equal to
zero.’’ The matrix form of the potential law is

¯ ¯B ?D = 0 (3)

where = vector of potential differences or the potential dif-D̄
ference vector. The use of potential graph for velocity analysis
of mechanisms is described, where it is proved to be dual to
the flow graph representation. Following this relation it was
proved that mechanisms and determinate trusses are also dual,
as illustrated in a later section.

RESISTANCE GRAPH REPRESENTATION

Description

The resistance graph is a generalization of the flow and the
potential graphs. The resistance graph is a network graph, des-
ignated by GR , where there are edges with dependence be-
tween the flow and the potential difference. Such dependence
is characterized by either a scalar or a matrix. The scalar is
used if there is an explicit dependence between the vector
magnitudes of the flow and potential difference, otherwise the
matrix is used. For both scalar and matrix possibilities there
are two presentations: (1) resistance [designated by R(e) and
R(e), respectively]; and (2) conductance (designated by K and
K, respectively), as follows:

¯ ¯ ¯ ¯uD(e)u = R(e) ? uF(e)u; uF(e)u = K(e) ? uD(e)u (4)

¯ ¯ ¯ ¯D(e) = R(e) ?F(e); F(e) = K(e) ?D(e) (5)

where = potential difference in edge e; and F̄(e) = flow.D̄(e)
Flows and potential differences of the resistance graph must
satisfy the flow and potential laws, respectively.
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When dealing with resistance graph representation, an im-
portant theorem from graph theory, called the orthogonality
principle, becomes essential. The orthogonality principle states
that vector cutset and circuit matrices are orthogonal

t¯ ¯B ?Q = 0 (6)

From this principle the following equations can be established
(Swamy and Thulasiraman 1981):

t¯ ¯ ¯D = Q ?D (7)T

t¯ ¯ ¯F = B ?F (8)T

The edges in the resistance graph are divided into three
principal groups: flow sources, potential difference sources,
and resistance edges. Flow sources, denoted by bold dashed
lines, are edges for which the value of the flow is known and
is independent of the potential difference. Potential difference
sources, denoted by bold solid lines, are the edges in which
the potential difference is known and is independent of the
flow in that edge. Resistance edges, denoted by black solid
lines, are the edges at which there is a dependence between
the flow and the potential difference.

Conductance Cutset Method for Solving
Resistance Graphs

The analysis problem for the resistance graph is that given
the flows in the flow sources, the potential differences in the
potential difference sources, and the resistances (or conduc-
tances) of the resistance edges, find the flows and potential
differences in all the edges of the graph. The obvious method
for solving the resistance graphs is to write all the equations
based on (2)–(5), and then to solve them simultaneously. This
method has a high computational complexity, therefore the
current and the next sections show more efficient analysis
methods based on graph theory theorems. The CCM will be
explained first.

In the graph there can be no circuits consisting of only po-
tential difference sources. If such circuits of sources existed,
then, by the potential law, there would be linear dependence
between the potential differences in these sources. Such a de-
pendence violates the definition of potential difference sources.

For the same reason in the resistance graph there can be no
cutset of the flow sources consisting of only the flow sources.
Therefore, it can be proven (Swamy and Thulasiraman 1981)
that there exists in the resistance graph, a spanning tree con-
taining all the potential difference sources and no flow sources.
Finding such a spanning tree is the starting point for the de-
velopment of both CCM and RCM.

Eq. (2) is now rewritten, dividing both the vector cutset
matrix and flow vector in accordance to the types of edges

D R P
F̄D¯ ¯D

(9)I Q QDR DP ¯ ¯ ¯ ¯ ¯? F = 0 ⇒ Q F = 2Q FR T9R R T9F PS DS DT9 ¯ ¯0 Q QT9R T9P F̄P

where D and P = edges corresponding to the potential differ-
ence and flow sources, respectively; R = remaining edges of
the graph that are the edges with resistance; and T9 = spanning
tree branches that are not sources.

The crucial property of the potential differences in the re-
sistance graph is that the potential differences in the branches
of the spanning tree uniquely determine the potential differ-
ences in the chords. This can be formalized as follows (Swamy
and Thulasiraman 1981):



D̄ I 0D D̄Dt t t¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯D = 2B D ⇒ D = Q D ⇒ D = Q Q ?C T T T R DR T9R S DS D S D D̄ T9t t¯ ¯ ¯D Q QP DP T9P

t t¯ ¯ ¯ ¯ ¯⇒ D = Q D 1 Q DR DR D T9R T9 (10)

As shown in Swamy and Thulasiraman (1981), combining (5),
(9), and (10) results in

t t¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯(Q ?K ?Q ) ?D = 2(Q ?K ?Q ) ?D 2 Q ?F (11)T9R R T9R T9 T9R R DR D T9P P

where KR = square diagonal matrix whose components cor-
respond to the conductances in the resistance edges.

The values of the elements of the matrix products can be
derived on the basis of linear algebra considerations, as fol-
lows. is the sum of conductances of the edgest¯ ¯[Q ?K ?Q ]T9R R T9R ij

that belong to both cutsets i and j defined by branches with
resistance; the sign of the conductance is taken positive if it
is similarly directed relative to both cutsets, negative other-
wise. is also the sum of conductances of thet¯ ¯[Q ?K ?Q ]T9R R DR ij

edges that belong to both cutsets i and j, but this time j is a
branch that is a potential difference source, while i is a branch
with resistance, as before.

After solving (11), all the potential differences in the
branches are known. All the potential differences in the graph
are obtained by applying (7), after which all the flows in the
graph are obtained by (4) or (5).

RCM for Solving Resistance Graphs

The CCM for analysis of resistance graphs, which was de-
veloped in the previous section, exploits the rule that the po-
tential differences in the branches of the spanning tree
uniquely determine the potential differences in all the graph
edges. Therefore using CCM, a set of linear equations is ob-
tained, where the potential differences in the branches are the
only unknowns.

The RCM shown in this section is similar to CCM and is
actually its dual method, being derivable from it by using only
the dualism connection explained later in the section. RCM
allows one to obtain the set of linear equations whose only
unknowns correspond to the flows in the chords of the graph.
It takes advantage of a basic rule that states that the flows in
the chords of the graph uniquely determine the flows in all the
graph edges (Swamy and Thulasiraman 1981).

The first step in the RCM is choosing a spanning tree. As
explained in the previous section, the spanning tree should
contain all the potential difference sources and should not con-
tain any flow sources. Further development steps are exactly
dual to those made during the development of CCM and can
be found in Shai (1999).

The final formula of RCM is then

t t¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯(B ?R ?B ) ?F = 2(B ?R ?B ) ?F 2 B ?D (12)C9R R C9R C9 C9R R PR P C9P D

where RR = square diagonal matrix, the components of which
correspond to the resistances in the resistance edges. The el-
ements of the matrix products can be derived on the basis of
linear algebra considerations as follows. is¯ ¯[B ?R ?B ]C9R R C9R ij

the sum of the resistances of the edges that belong to both the
circuits i and j, defined by the chords with resistance. The sign
of the resistance is positive if the corresponding edge is di-
rected similarly in relation to both circuits, negative otherwise.

is calculated the same way, except that circuitt¯ ¯[B ?R ?B ]C9R R PR ij

j is now defined by the chord that is the flow source, while i
is the chord with resistance, as before.

Eq. (12) is actually the set of linear equations, the unknowns
of which are the flows in the resistance chords of the graph.
After solving it, all the flows in the graph are obtained by
using (8) and after that all the potential differences in the graph
are obtained by (4) or (5).
 FIG. 5. Rod Deformation

As was already pointed out above in this section, CCM and
RCM are mutually dual methods. This means that the CCM
applied to resistance graph G is equivalent to the RCM applied
to the resistance graph G*, which is the dual graph of G.

Resistance Graph Representation for
Multidimensional Trusses

The interpretation of the flows in the edges of the resistance
graph representing a truss remains similar to that of the flow
graph representing a determinate truss. The potential of the
vertex of the resistance graph representing a truss is equal to
the displacement vector of the corresponding pinned joint of
the truss. Consequently, the potential differences in the graph
edges are equal to the relative displacements of the end joints
of the corresponding rods.

One now turns to obtaining the conductances of the graph
edges. Let dim(F̄) be the dimension of the forces in the truss.
The explanation provided here is for plane trusses [dim(F̄) =
2], but the approach is valid for three dimensions as well, and
can easily be extended.

Eq. (5) can be rewritten as

¯ ¯F = K ?D (13)R

where KR is built from the conductivity matrices of the resis-
tance edges, each being a square matrix of size dim(F̄) 3
dim(F̄) and is derived as shown in Fig. 5.

Let correspond to the potential difference between theD̄ (e)i

two end vertices of edge e in the coordinate axis i. Under the
small deflection assumption (West 1993), one can obtain from
Fig. 5—which shows the initial and the deformed states of
the rod—the following equation describing the scalar magni-
tude of the potential difference as a function of its coordinate
components:

¯uD(e)u = D (e) ?cos a 1 D (e) ?sin a (14)x y

where a = angle of the element.
Combining (5) and (14) gives

2F (e) cos a sin a ?cos a D (e)x xF̄(e) = = K(e) ? ?2S D S D S DF (e) sin a ?cos a sin a D (e)y y

D (e)x= K(e) S DD (e)y (15)

Two 2D conductance matrix of the graph edges [designated
by G(e)] is the product of the constant conductivity and the
transformation matrix. Thus, for the edges corresponding to
truss rods, the constant conductivity is equal to the rod stiffness.
For edges corresponding to hinged support reactions, the con-
stant should be taken as 0, since there is no dependence between
the displacement of the support and the reaction force.

In indeterminate trusses the forces in the rods cannot be
determined by the laws of statics alone, so one must also con-
sider the compatibility conditions. In the terminology of the
graph representation, this means that the resistance graph rep-
resenting the indeterminate truss should be analyzed by using
the flow and potential laws simultaneously. Thus, the process
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TABLE 1. Types of Edges in Resistance Graph Representation of
Indeterminate Truss

Type of edge Conductance of edge

Truss rod—Resistance edge with
finite conductance

2A(e) ? E(e) cos a sin a ? cos a
? 2S Dsin a ? cos a sin aL(e)

where A(e), E(e), and L(e) are cross-
sectional area, modulus of elasticity,
and length of rod e, respectively

Fixed supports and roller supports
on inclined surface

Zero

External force applied on the truss
—Flow source edge

No constant conductance

of building the resistance graph corresponding to an indeter-
minate truss can be summarized as follows.

Build a graph following the same steps as explained in a
previous section for building the flow graph of a determinate
truss. The flow graph becomes a resistance graph when one
assigns resistances (or conductances) to all its edges, as shown
in Table 1, that produce potential differences subject to the
potential law.

Analysis Process Using CCM

The process is based on applying the CCM to the resistance
graph representation of the indeterminate truss. The first step
is choosing a suitable spanning tree. The reaction edges have
properties similar to those of the potential difference sources
since they preserve a zero potential difference along one or
two axes. Hence, as was explained above, the spanning tree
must include all the reaction edges, but it should not include
the flow source edges.

Once the equations of CCM have been obtained, the com-
patibility conditions on the reaction edges are to be satisfied.
For each reaction edge corresponding to a roller support, there
is a constant relation between the x- and y-components of the
potential difference that is equal to the tangent of the plane
inclination angle. This relation is taken into account by re-
placing one of the components by the other multiplied with
the relation coefficient. This is equivalent to replacing two
corresponding columns in the conductance cutset matrix by
one equal to their linear combination. The resultant matrix
would possess one linearly dependent row that should be re-
moved. An example of an indeterminate truss, its correspond-
ing graph and the spanning tree, is shown in Fig. 6.

The CCM gives the following set of equations:
R 1 2 3 4 5

R K 1 K 1 K 1 K 1 K K 1 K 2K 2 K 2 K 2K 2 K 2K 2 K 0R 6 8 9 13 9 13 6 8 9 8 9 8 9

1 K 1 K K 1 K 1 K 2K 2K 2K 09 13 1 9 13 9 9 9

2 2K 2 K 2 K 2K K 1 K 1 K 1 K 1 K 1 K 1 K K 1 K 1 K 1 K 1 K K 1 K 1 K 1 K 2K 2 K6 8 9 9 2 6 8 9 10 11 12 8 9 10 11 12 8 9 11 12 10 11

3 2K 2 K 2K K 1 K 1 K 1 K 1 K K 1 K 1 K 1 K 1 K 1 K 1 K K 1 K 1 K 1 K 1 K 2K 2 K8 9 9 8 9 10 11 12 3 7 8 9 10 11 12 7 8 9 11 12 10 11

4 2K 2 K 2K K 1 K 1 K 1 K K 1 K 1 K 1 K 1 K K 1 K 1 K 1 K 1 K 1 K 2K8 9 9 8 9 11 12 7 8 9 11 12 4 7 8 9 11 12 11

5 0 0 2K 2 K 2K 2 K 2K K 1 K 1 K10 11 10 11 11 5 10 11

D 2cos(0)Rx

D 2sin(0)Ry

D 01x

D 01y

D cos(0)2x

D sin(0)2y
? = 2 ? P
D cos(0)3x

D sin(0)3y

D 04x

D 04y

D 05x

D 05y
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FIG. 6. (a) Statically Indeterminate Truss; (b) Resistance Graph

Now, suppose, for example, that the roller support R in the
truss of Fig. 6 was located on a surface inclined by an angle
a, i.e., there is an inclined roller support instead of a horizontal
one. In this case, an adjustment should be done to the analysis
equations. The column corresponding to DRx in the conduc-
tance cutset matrix is multiplied by tan a and is added to the
column corresponding to DRy. This way the two unknown DRy

and DRx are replaced only by DRy. Now removing one depen-
dent equation results in a new equation set that can be ana-
lyzed.

Relation between Conductance Cutset Method for Analyzing
Indeterminate Trusses and Other Known Methods

Many methods for analyzing indeterminate trusses have
been reported in the literature; most of them are based on
virtual work and the minimum energy principle. In the ex-
ample presented in Fig. 7, all the cutsets are chosen to contain
exactly one vertex in one of the two sides of the cutset, thus
the corresponding cutset matrix is equal to the incidence ma-
trix, a well-known matrix in graph theory literature (Fenves
1966; Deo 1974).

Choosing the incidence matrix instead of the cutset matrix
makes it possible to reveal the relation between the CCM and



FIG. 7. Example of Relation between CCM and Displacement Method: (a) Indeterminate Truss; (b) Corresponding Graph; (c) Corresponding Equations
the displacement method. In this section it is shown that the
stiffness matrix of the displacement method (Hibbeler 1984)
is the same as the conductance cutset matrix obtained from
the resistance graph, as shown in Fig. 7. It is interesting to
notice that the number of elements of value zero in the matrix
obtained using the displacement method is fixed for any num-
bering of the vertices, while using CCM this number varies
according to the chosen spanning tree.

DERIVING DISPLACEMENT METHOD FROM
RESISTANCE GRAPH REPRESENTATION

To derive the displacement method, one starts with the in-
cidence matrix (Deo 1974), the rows of which are linearly
dependent on the rows of the vector cutset matrix. The flow
law can be written by using the incidence matrix as follows:

¯ ¯AF = 2A P (16)R P

Since any resistance edge e = ^u, v& satisfies F̄(e) =
where G(e) is defined in (5), (16) becomes¯G(e)D(e),

¯ ¯AK D = 2A P (17)R R P

The potential difference in an edge is equal to the difference
between the potentials of the end vertices [(1)], or in the matrix
form

tD̄ = A p̄ (18)R

that gives

t ¯AK A p̄ = 2A P (19)R P

The matrix AKRAt is actually the ‘‘stiffness matrix,’’ and
the minus sign of the element [AKRAt]ij is equal to the con-
ductance of the rod that meets both joints i and j (in the case
i = j it equals the sum of conductances of all the rods meeting
joint i). It is important to notice that a dual method of the
CCM for analyzing indeterminate trusses does not exist in the
graph representation, since the determinant of the conductance
matrix K(e) of each rod is equal to zero and therefore has no
inverse. However, it will be shown later that a dual method to
the CCM for trusses does exist when the trusses are repre-
sented by the resistance matroid representation (RMR).

RMR FOR MULTIDIMENSIONAL
INDETERMINATE TRUSS

Graph theory was used above to derive the displacement
method from CCM in the resistance graph representation.
However, this approach has been shown to have its limitations,
one of which is the impossibility of applying the RCM to
trusses, i.e., the method dual to CCM. It is known from the
literature that matroid theory, whose definitions and properties
are given in the Appendix, is a generalization of graph theory.
Therefore, representing engineering systems by matroid theory
enables one to obtain a more general perspective. Such a gen-
eralization is demonstrated in this section by representing in-
determinate trusses with RMR. Doing so enables one to reveal
the duality relation between the force and displacement meth-
ods, which is one of the main results of this paper.

Matroid Representation for Indeterminate Trusses

The first step of representing an indeterminate truss by a
matroid is to represent it by a resistance graph. Let GR be the
resistance graph representation of the indeterminate truss and
Q(G) its scalar cutset matrix. The scalar cutset matrix defines
the matroid MQ = ^S, FI &, where S is the set of columns of
Q(G) and FI is a family of all linearly independent subsets of
S. The subscript Q in MQ is used to emphasize that the matroid
corresponds to the scalar cutset matrix Q. Each element of MQ

is a scalar cutset matrix column that in its turn corresponds to
a truss element, which can be rod, external reaction, or exter-
nal force. An example of a truss with its corresponding matroid
is given in Figs. 8(a and d), respectively.
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FIG. 8. Example of Truss and Its Corresponding Matroid: (a) Truss; (b) Graph G; (c) Scalar Cutset Matrix Q(G ); (d) Matroid
Structural Interpretation of Matroid Components

Dependent Sets of MQ

The flow law for GR is given by

Q(G ) ?F = 0 (20)

where F = vector of force scalar values acting in the truss
elements. Therefore, the nonzero entries of the vector F define
a set of linearly dependent columns of the scalar cutset matrix.
By definition, such a set is also the set of dependent elements
in the matroid MQ. Thus, a dependent set in MQ corresponds
to a set of truss elements in which internal forces can act
simultaneously, i.e., the truss elements with nonzero internal
forces during some state of self-stress. Such a set forms an
indeterminate subset of truss rods (a subtruss).

Circuits of MQ

A circuit of the matroid is a minimal dependent set, i.e.,
removing even one of its elements results in an independent
set. It is interesting to notice that this definition coincides with
the definition of the simple circuit in graph theory which says
that removing even one edge from a circuit violates the circuit
property. Therefore, in the terminology of structures, a circuit
in MQ corresponds to a minimal indeterminate subtruss, which
is a one-degree indeterminate subtruss. Such a subtruss has the
properties of a circuit, since removing any of the rods from it
will result in a determinate truss or even a mechanism.

Base of MQ

The base of a matroid is the maximal independent subset
of S, i.e., adding any element to the base results in a dependent
set. Thus, the base in MQ corresponds to a determinate sub-
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truss that contains all the pinned joints of the truss. It is well
known that adding a rod to a determinate truss without adding
a pinned joint makes the truss indeterminate. For the sake of
consistency with the graph representations, the base of the ma-
troid representing the truss is chosen so that it does not contain
any external forces (flow sources) acting on the truss.

Cobase of MQ

The cobase of M (i.e., the set of elements that are not in
the base), is the set of external forces and redundant rods of
the truss. The notation that is used in this paper for graphs, is
applied also to matroids. For this reason, the base elements
(the determinate subtruss elements) are represented by double
lines, the cobase elements (redundant truss elements and ex-
ternal forces) by dashed lines, whereas the cobase elements
that correspond to the external forces are both dashed and
bold.

Fig. 9 shows the truss from Fig. 8, with highlighted base
and cobase elements [Fig. 9(a)], and the two fundamental cir-
cuits (circuits containing only one redundant rod or only one
external force) [Figs. 9(b and c)].

Circuit Matrix of MQ

According to the definition of a circuit in a matroid, because
each fundamental circuit in MQ corresponds to a set of linearly
dependent columns in Q (i.e., for each fundamental circuit Ci),
it can be written

l Q = 0 (21)ij jO ↓
j [ ci

where = jth column of matrix Q. In the terminology ofQ j↓

trusses, lij is the force acting in the truss element j due to a
force acting in element i.
FIG. 9. Example of Fundamental Circuits in Matroid of Truss: (a) Base and Cobase of M; (b) Fundamental Circuit Defined by Redundant Rod 3; (c)
Fundamental Circuit Defined by External Force P



The set of fundamental circuits is represented by a special
matrix B(MQ), called a circuit matrix of MQ . The rows of
B(M) correspond to the cobase elements of M and the col-
umns to all the elements of M. An entry ij of the matroid
circuit matrix is defined

[B(M)] = l (22)ij ij

Obviously, (21) still holds, when for some i, all lij are mul-
tiplied by the same arbitrary scalar. Therefore, it is legitimate
to ‘‘normalize’’ the circuit matrix [i.e., to multiply the rows of
B(M)] so that the matrix is written as follows:

B(M) = (B(M) uI ) (23)T

where I = unit matrix whose size is equal to the number of
cobase elements; and B(M)T = matrix with rows and columns
corresponding to the cobase and base elements, respectively.
In structural mechanics terminology, the value of [B(M)]i j be-
comes the force in a truss rod or reaction i when a unit force
is applied in a redundant element j, while in all the other re-
dundant elements the forces are set to zero.

For example, the circuit matrix of matroid MQ that repre-
sents the truss of Fig. 8 is developed as follows. For cobase
elements 3 and P, equations based on (23) are written, re-
spectively

1
2

2 0Ï
l ?Q 1 l ?Q 1 l ?Q = 1 ? 2 1.414 ?3,1 1 3,2 2 3,3 3↓ ↓ ↓ S DS D 11

2Ï

1

2 0Ï
1 1 ? = = 0S DS D 01

2Ï

1
2

2Ï
l ?Q 1 l ?Q 1 l ?Q = 21.414 ?P,1 1 P,2 2 P,P P↓ ↓ ↓ S D1

2Ï

0 21 0
1 1 ? 1 1 ? = = 0S D S D S D1 0 0

Hence, the circuit matrix of MQ is

1 2 3 P

3 1 21.414 1 0S U DB(M) = P 21.414 1 0 1

Proposition 1: Every admissible force vector F is a linear
combination of the rows of B(M).

Proof: Forces in the determinate subtrusses (bases) are
uniquely defined by the forces in the redundant elements.
Moreover, each row of B(M) corresponds to the forces in the
determinate subtruss yielded by a unit force acting in the cor-
responding redundant element. Therefore, by the superposition
principle, every admissible force vector is derived by summing
over all the rows of B(M) each multiplied by the force in the
corresponding redundant element.

Proposition 2: The matroid potential law

B(M) ?D = 0 (24)
J

FIG. 10. Form of Circuit and Cutset Matrices

where D = vector of admissible scalar displacements in truss
elements.

Proof: According to the definition of matroid MQ , each row
of B(M) corresponds to a state of self-stress, which is a vector
of admissible flows in GR . On the other hand, vector D cor-
responds to a vector of admissible scalar potential differences
in GR . Thus, according to the equilibrium between the internal
strain energy of the truss and the work done by the external
forces (West 1993), multiplication of every row in B(M) by
vector D is equal to zero.

Cutset Matrix of Matroid

The cutsets of a matroid are presented by a cutset matrix as
explained below.

Proposition 3: The matrix Q(M) = (Iu 2 is the cutsettB )T

matrix of matroid MQ , i.e., each row of Q(M) defines a fun-
damental cutset in the matroid.

Proof: To prove this property one has to prove that every row
of Q(M ) satisfies the conditions of a cutset (which are given
in the Appendix).

In the second definition section of the Appendix, conditions
1 and 3 are satisfied since Q(M ) contains a unit matrix whose
rows are nonempty and do not contain other rows of the ma-
trix. Condition 2 requires that for any circuit i and any cutset
j the number of common elements is not equal to 1. This can
be easily proved by considering forms of the circuit and the
cutset matrices (Fig. 10). The number of common elements in
circuit i and cutset j is the number of elements corresponding
to the nonzero entires in rows i and j in the circuit and the
cutset matrices, respectively. From Fig. 10 one can see that
this number can be either 0 or 2 depending on whether element
Bij is equal to zero or not. Thus, the number of common ele-
ments in a circuit and a cutset can never be equal to 1.

Proposition 4: The orthogonality principle

tQ(M ) ?B (M) = 0 (25)

Proof: By substituting (25) into (27) one obtains

tB(M)Tt tQ(M) ?B (M) = (Iu 2 B(M) )TS DI

After the multiplication one gets = 2 = 0.t tB(M) B(M)T T

Proposition 5: The matroid flow law

Q(M) ?F = 0 (26)
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FIG. 11. Example of Truss and Its Corresponding Graph and Matrices: (a) Truss; (b) Graph G; (c) Vector Cutset Matrix; (d) Scalar Cutset
Proof: By Proposition 1 every admissible force vector F is a
linear combination of B(M) rows. According to Proposition 4,
Q(M) is orthogonal to B(M), hence it is orthogonal to every
linear combination of its rows, i.e., F.

Because of the validity of Propositions 1–5, the flow, potential,
and orthogonality laws are all valid for matroid M. Such a ma-
troid is called a resistance matroid. Since (13) was derived using
only these properties of the resistance graph, it is also valid for
the matroid MQ . Substituting (12), the matrices corresponding to
MQ instead of those corresponding to G, yields

t t(B(M) ?R ?B(M) ) ?F = 2(B(M) ?R ?B(M) ) ?FC9R R C9R C9 C9R R PR P

2 B ?DC9P D (27)
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Example of Applying RCM in Resistance Matroid to
Indeterminate Truss

This example will be solved using the equations derived
above. It can be recognized as the well-known force method
(Fig. 11). A base (statically determinate subtruss) is obtained
by removing from the truss the redundant rods 7 and 10.
Hence the cobase elements of the resistance matroid repre-
senting the truss are 7, 10, and P, whereas the latter is the
flow source. The circuit matrix is now built by calculating
three self-stresses each having a unit force in one of the cobase
elements.

The matroid circuit matrix is
1 2 3 4 5 6 8 9 11 7 10 P

7 0 20.707 20.707 20.707 0 0 1 20.707 0 1 0 0B =M
10 20.707 0 0 0 1 20.707 0 20.707 20.707 0 1 0S U U U U U U U U U U U D
P 0 0 0 0 21.414 1 0 1 0 0 0 1

1 2 3 4 5 6 8 9 11 7 10

B =C9R 7 0 20.707 20.707 20.707 0 0 1 20.707 0 1 0S U U U U U U U U U U D10 20.707 0 0 0 1 20.707 0 20.707 20.707 0 1

1 2 3 4 5 6 8 9 11 7 10
B =PR

P(0u 0u 0u 0u 21.414u 1u 0u 1u 0 u 0u 0 )



Now, (27) turns into

4.823 0.5 F 0.7077 = ?PS D S D S D0.5 4.823 F 3.41110

Substituting P = 1 gives the following solution to the equations F7 = 0.074 and F10 = 0.699:

F1

F2

F3

F4

F5 0 20.707 20.707 20.707 0 0 1 20.707 0 1 0 0
F6 t¯ ¯= F = B(M) F = 20.707 0 0 0 1 20.707 0 20.707 20.707 0 1 0c S DF8 0 0 0 0 21.414 1 0 1 0 0 0 1
F9

F11

F7

F10

P

20.494
20.0523
20.0523
20.0523
20.714

0.074
0.506

? 0.699 =S D 0.074
1

0.453
20.494
0.074
0.699

1

Now, using the relations given in (8), the forces in the re-
mainder of the truss elements can be obtained.

GENERAL PERSPECTIVE ON REPORTED
APPROACH AND ITS APPLICATIONS

As was shown in this paper, applying combinatorial repre-
sentations to structural analysis enables one to get a general
perspective, providing some new and global results. Further-
more, taking advantage of the fact that the same approach has
been applied to different fields, the dualism between deter-
minate trusses and mechanisms has been established, due to
the dualism connection between their corresponding represen-
tations. This dualism opened a new avenue in research and
made it possible to obtain new applications, some of which
are mentioned below. The dualism gave new insight into the
applicability of the approach underlying the current paper,
whereas the main issue of the paper itself was to establish the
theoretical foundation for future applications in structural anal-
ysis. From the contribution of establishing the truss-mecha-
nism mutual dualism, one can conclude the importance of de-
riving the dualism between force and displacement methods,
which is reported in this paper.

Dualism between Determinate Trusses and
Mechanisms

Fig. 12 gives the trace of how the truss-mechanism dualism
was derived, and an example of a mechanism and its dual truss
appears in Fig. 13. In this case, the dualism is based on the
fact that the cutset matrix of graph G is actually the circuit
FIG. 12. Schematic Explanation of Mutual Dualism between Deter-
minate Trusses and Mechanisms

matrix of its dual graph G*. When the flow vector F̄ of G is
equal to the potential difference vector of G*, the flow lawD̄
becomes the potential law in the dual graph and vice versa.
Since G corresponds to a determinate truss that satisfies the
flow law, and G* to a mechanism that satisfies the potential
law, the mutual dualism is derived.

This new mutual dualism opens up new possibilities for
applications, some of which have already been carried out and
are listed below, whereas many others are currently being ex-
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FIG. 13. Example of Mechanism and Its Dual Truss: (a) Mechanism; (b) Dual Truss

FIG. 14. Example of Stable and Nonstable Trusses and Their Dual Mechanisms: (a) Stable Truss; (b) Nonstable Truss; (c and d) Corresponding Dual
Mechanisms
amined. This new connection enables one to use knowledge,
theorems, and algorithms from one engineering field in the
other, and vice versa. For example, methods like Henneberg,
Maxwell-Cremona, and others from structural mechanics were
applied to machine theory. On the other hand, image-velocity,
decomposition to kinematical groups (Assur groups) are now
being applied to structural mechanics.

In addition, this connection was found to be useful in arti-
ficial intelligence representations, and reaffirmed the claim of
Simon (1981) who wrote: ‘‘Solving a problem simply means
representing it so as it make the solution transparent.’’ In Figs.
14(a and b) two determinate trusses are given, whereas only
the first one is stable. Reaching this conclusion without per-
forming calculations is not easy even for experts in mechanical
engineering. On the other hand, considering the mechanisms
dual to these trusses makes the task easier. Fig. 14(c) shows
the mechanism dual to the truss in Fig. 14(a), whereas Fig.
14(d) shows the mechanism dual to the truss in Fig. 14(b). In
the mechanism of Fig. 14(d), links 1 and 9 are collinear, in
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contrast to the mechanism of Fig. 14(c). Therefore, it is easy
to derive that the dual mechanism of the first truss in Fig.
14(d) is locked while the dual mechanism of the second truss
is not. This makes it possible to conclude that the truss in Fig.
14(a) is not stable, whereas the truss in Fig. 14(b) is stable.
This example strengthens the claim that there are properties
that are hard to detect in the primal representation, whereas
they are transparent in the dual.

Dualism between Force and Displacement Methods

A better insight into the approach is achieved when one
notices that the approach applied to derive the dualism be-
tween trusses and mechanisms was also applied to derive the
dualism between the force and displacement methods, as
shown in Fig. 15. This new relation was derived on the basis
of the duality connection between CCM and RCM in the ma-
troid resistance representation. On the basis of the results
achieved by establishing the mutual dualism between trusses



FIG. 15. Schematic Explanation of Mutual Dualism between Displace-
ment and Force Methods

FIG. 16. (a) Integrated Multidisciplinary System; (b) Corresponding
Graph

and mechanisms, one can foresee the potential offered by the
dualism between the force and displacement methods.

Practicality of This Approach

In the current paper, the resistance graph has been applied
to structural analysis. Earlier, this representation has also been
applied to mass-spring-damper dynamic systems (Shai and
Preiss 1999b), electrical systems (Shai 2001b), and other sys-
tems. Hence, an important practical application arises enabling
one to deal with integrated multidisciplinary systems consist-
ing of elements from the above variety of fields interacting
with one another. An example for such a system is presented
in Fig. 16. More details on this application possibility can be
found in Reich and Shai (2000).
J

Applying Combinatorial Representations
to Education

As explained above, the combinatorial representations en-
able one to achieve a new insight into different disciplines.
This idea was applied to the development of a new teaching
method by which students are first taught the combinatorial
representations, and only then do they learn the engineering
material. Due to this new way of teaching, students have
learned the engineering material from a new multidisciplinary
perspective. For example, analysis of mechanisms and deter-
minate trusses were taught on the basis of potential and flow
graph representations. Since the last representations are dual,
the material was taught simultaneously, thus when a student
faced a problem in a mechanism, he was able to transform it
to a determinate truss. By doing that he used knowledge both
from machine theory and structural mechanics, which helped
him in the studying process. Until now, more than 250 students
have already participated in this course and related methodo-
logical material is being prepared for high school teachers.
More details can be found in Shai and Preiss (1994).

This approach can also be used for artificial intelligence-
based reasoning, where this time the reasoning is performed
on the basis of CR. Since the mathematical foundation of the
representations is discrete mathematics, it is easy to implement
the representations on a computer. Moreover, the reasoning
made upon the representations can use additional knowledge,
called ‘‘embedded engineering knowledge.’’ This approach
opens up a wide variety of additional applications, but those
are beyond the scope of the current paper. Examples and more
details can be found in Shai and Preiss (1999b) and Shai
(2001b).

CONCLUSIONS

This paper started with a brief introduction to the general
approach, the idea of which is to build combinatorial mathe-
matical models called combinatorial representations (CR),
with which to represent various engineering systems. The cur-
rent paper introduced only those representations that were ap-
plied to structural analysis, namely flow graph, resistance
graph, and resistance matroid representations. The flow graph
was applied to the analysis of determinate trusses, whereas the
resistance graph and resistance matroid were applied to inde-
terminate trusses. The last two representations contain two mu-
tually dual methods called CCM and RCM. When the resis-
tance graph was applied to represent indeterminate trusses,
CCM was proven to be equivalent to the known displacement
method. When the matroid representation was applied to rep-
resent indeterminate trusses, RCM was shown to be equivalent
to the known force method. Based on the mutual connection
between CCM and RCM, it was derived that the displacement
and force methods are dual methods.

The contribution of this approach to structural analysis is
not only theoretical but also practical. It was explained in the
present paper that from the fact that the same CR were used
for structural analysis and also for various engineering sys-
tems, a new way of representing multidisciplinary systems has
arisen. In addition, the conditions between the CR opened a
new avenue for the use of algorithms, methods, and theorems
from machine theory in structural analysis and vice versa. This
approach also enables a new teaching method, by which stu-
dents first learn the CR and only then the engineering material.
By doing that, students gain a general perspective on different
engineering fields and comprehend the new relations between
the fields that today are considered to be different.

APPENDIX. BASICS OF MATROID THEORY

Definition: If one denotes S to be a finite set, and F to be a
collection of certain subsets of S, then the pair M = ^S, FI& is
called a matroid if the following properties are satisfied:
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1. Ø [ FI.
2. If X [ FI and Y # X then Y [ FI must also hold.
3. If X [ FI and Y [ F I and uXu > uYu then there exists

an element x [ X 2 Y, so that Y < {x} [ FI.

S is said to be the underlying set of matroid M. The subsets
of S that belong to FI are said to be independent subsets,
otherwise they are called dependent subsets.

Example: Let Q be an m 3 n matrix. The matroid MQ =
{SQ , can be defined as follows:IF }Q

1. The underlying set SQ is the set of n column vectors of
Q.

2. Every subset of linearly independent columns of Q be-
longs to FI.

Maximal independent sets of M (i.e., independent sets that
are not contained in any other independent set of M) are called
bases of M. For every base of M there is a corresponding
cobase which is the complement of the base to S. It can be
proved (Recski 1989) that the sizes of all the bases of a ma-
troid are equal. Every matroid can be described also by the
collection of all its bases T, instead of the collection of all its
independent sets F as was done in the example above. Minimal
dependent sets of M (i.e., dependent sets that do not contain
other dependent sets) are called circuits of M. The collection
of all the circuits of M is denoted by C.

Definition of a matroid cutset: The subset X # S is called a
cutset of M if and only if it satisfies the following conditions:

1. X ≠ Ø
2. uX ù Yu ≠ 1 for every Y [ C
3. X is minimal with respect to these properties

Since a base is a maximal possible set of independent ele-
ments, adding an additional element to the base turns it into
a dependent set, i.e., a set that contains a circuit. Therefore,
every cobase element defines exactly one circuit that contains
the element itself and all the other elements are from the base
only. Such a circuit is called a fundamental circuit. In graph
theory terminology a base is a spanning tree over the matroid.

It can also be shown that every base element defines a
unique cutset that contains the element itself while all the other
elements are the cobase elements. More details about matroid
theory can be found in Recski (1989).
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NOTATION

The following symbols are used in this paper:

A = incidence matrix;
B̄ = vector circuit matrix;

B(M) = circuit matrix of matroid;
C = set of matroid circuits;
D = vector of scalar displacements in truss elements;

dim(F̄ ) = dimension of forces acting in truss;
E = set of graph edges;

e(G ) = number of edges in graph G;
F = scalar flow vector;
F̄ = flow vector;
FI = independent subsets of matroid;

F(e) = value of flow in edge e;
F̄(e) = flow in edge e;

G = graph;
G* = dual graph of graph G;
GF = flow graph;
GR = resistance graph;
GD = potential graph;

K(e) = scalar conductance of edge e;
K(e) = matrix conductance of edge e;

KR = square matrix containing conductances of resistance
edges of graph;

M = matroid;
MQ = matroid defined by matrix Q;

P̄ = vector of flows in flow sources;
Q = scalar cutset matrix;
Q̄ = vector cutset matrix;



Q(M) = cutset matrix of matroid;
r̂ (e) = unit vector in direction of edge e;
R(e) = scalar resistance of edge e;
R(e) = matrix resistance of edge e;

RR = square matrix containing resistances of resistance
edges of graph;

S = underlying set of matroid;
T = spanning tree;

T9 = spanning tree without sources;
T = set of matroid bases;
V = set of graph vertices;
V̄i = relative linear velocity of link i;

v(G ) = number of vertices in graph G;
0 = zero matrix;
D = scalar potential difference vector;
D̄ = potential difference vector;

D̄(e) = potential difference in edge e; and
p(i) = potential of vertex i.
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